Open Universiteit

~
L - = h

Test Informed Learning with Examples (TILE)h

Set the right example when teaching programming &

Niels Doorn

V\\\\
W
¥ N N

Open Universiteit

NHL
STEN

university of
applied sciences

Set the right example when teaching programming:
Test Informed Learning with Examples (TILE)

1%t Niels Doorn 2 Tanja Vos
Open Universiteit Universitat Politécnica de Valé
Heerlen, The Netherlands Valencia, Spain
niels.doorn@ou.nl tvos@dsic.upv.es

Abstract—Many educators face problems with integrating test-
ing into programming education. For instance: existing courses
are already fully packed; testing requires skills that students
might not yet have; and testing is, although considered important,
not always given priority by students. Educators, in general, do
not have time to overhaul a programming course to fully integrate
testing, resulting in a situation in which the improvement of
testing education seems to have slowed down. In this paper, we
propose Test Informed Learning with Examples (TILE), a new
concept to create test: eness in il ds 'y i
courses. TILE aims to introduce testing as early as possible and
in a subtle way. As a result, integration into existing curricula
can be done seamlessly and requires less effort than completely
overhauling existing programming courses. The contributions of
this paper are: the ion of TILE; i of having
applied this method in the and an open itory with
assignments using our approach. Applying TILE seems to be a

sl h to i di testing in early programming.
Moreover, some TILEs can be added to existing courses with
almost no effort from day one. More research is needed to gain
confidence in the benefits of using TILE over time and to collect
evidence that we reached the final aim of TILE, ie. students

3 Beatriz Marin 4™ Erik Barendsen
Universitat Politécnica de Valéncia Open Universiteit
Valencia, Spain Heerlen, The Netherlands
bmarin@dsic.upv.es erik.barendsen @ou.nl

early: introduce students to testing from the very first
example program they see and write themselves in exercises;

seamless: testing will be introduced in a smooth and con-
tinuous way as an inherent part of programming, not as a
separate activity;

subtle: we will make use of clever and indirect methods to

teach them testing knowledge and skills.

We are convinced that TILE will help to solve (or at least

soften) part of the drawbacks mentioned above.

« Students’ negative attitude towards testing comes from
the fact that they see it as something separated from
programming. Testing is seen as tangential to what really
matters: writing a program to solve a problem [4]. If we
introduce testing too late, students consider that it just
gives them more work and was not needed before. In
TILE, we do not introduce testing as a separate activity. It
is presented and used as an inherent part of programming,
which it is, as early as possible.

that test because that i belongs to ing, and « R ding the packed programming courses, we advocate
not because it is explicitly asked from them. - that, if testing is seen as an additional topic to cover, we
Index Te i i testing, Di- are not teaching programming in the right way. Moreover,

dactic approach

I. INTRODUCTION

Software testing is an important skill required for software
engineers. Nevertheless, testing is often taught late in computer
science curricula. Research has demonstrated that integrating
software testing in early programming courses has many
benefits [1]: improving students’ performance; providing better
feedback to students; and having a more objective grading
process. However, the drawbacks of integrating testing in

Intradnatar: nenmrammineg aanrcac ava ol many Qrntalan at

if we as educators, have the idea that adding testing means
adding more work or that testing can be left out and
interchanged with another topic, then we will convey
the same message to our students, contributing to their
negative attitude towards testing.

« Regarding the additional workload, introducing TILE and
TILE-ing examples and exercises will take effort and
increase the workload once. Nevertheless, TILE, as we
show in this paper, comes with an open source repository
such that educators have access to exercises and ideas
thaw aan ancili nea miv ar adant far thais canvcac

E as
ning

4™ Erik Barendsen ke

with

1%t Niels Doorn 274 Tanja Vos 3 Beatriz Marin

Open Universiteit Universitat Politéecnica de Valéncia Universitat Politécnica de Valéncia Open Universiteit i
Heerlen, The Netherlands Valencia, Spain Valencia, Spain Heerlen, The Netherlands =
niels.doorn@ou.nl tvos @dsic.upv.es bmarin@dsic.upv.es

ises.

erik.barendsen @ou.nl r

Test Informed Learning with Examples

WHY??

Testing early is very
effective to measure
software quality and
avoid high costs

Software testing is very important...

...but also problematic in education

Software failures
are to be avoided

Students don’t test

their code very well

100
90
80
70
60
30

30
20

10
o = wm B
REQS DESIGN CODE TEST PROD

ILLUSTRATED BY SEGUE TECHNOLOGIES

// give difficulty stars between 1 and 5
public void setDifficulty(double difficulty)

{
if(1 <= this.difficulty && this.difficulty % 0.5 == 0)
{

] this.difficulty = difficulty;

}else
I

- Bublin o

Wednesday, April 19

Software bug ruins ICST

ntegrating testing into
programming education
poses challenges = for
educators. Existing
courses may already be
too full, students may lack
necessary skills, and
testing may not be a
priority for them. Due to
lack of time, educators

not be able to
comphstely revamp their
programming courses to
incorporate testing,
resulting in a slowdown in
improving Rgting
education.

To address this issue. we
proposé ‘'a new approach
called Test Informed
Leamning with Examples
(TILE) that aims to
introduce testing early on
and in a subtle way. This
enables seamless
integration into existing
curricula and requires less
effort than completely
overhauling programming
courses. This paper
presents TILE and shares
experiences of applying
this method in the field.

Rer
foll
imp

The|
thal
rela
the
beh|
ofa
exp)
inl
its

beh)
con|
ory

1t o)

Educators struggle with

teaching software testing

There are not many
evidence based

didactical
approaches

TESTING IS INTRODUCED LATE! JUST LOOK AT THE BOOKS

- Ten commonly used books on C, Java, Python
- Use of TILE constructs in exercises
- When is testing introduced

- When is assert introduced

Test Informed Learning with Examples

TESTING IS INTRODUCED LATE! JUST LOOK AT THE BOOKS

PAUL DEITEE
HARVEY DEITEL

FUNDAMENTOS. ,
DE PROGRAMACION

LIERO DE PROBLEMAS

Luis Joyanes Aguilar
Luis Rodriguez Baena
Matide Feméndez Azuela

Igiasedan de Woestyne
JamVapthienen

~ SOFTWAREONTWERP
EN PROGRAMMEREN
MET PYTHON 3

d<PBDEITEL DEVELOPER SERIES

= U L N (
Java
A VA
Interactive Java

for Programmers JShell

Java Platform
Module System

(Project Jigsaw)

~ Building-Skills in
= Pyth”on

David J. Barnes & Michael Kélling

.
OBJECTS FIRST WITH

__Java

A Practical Introduction
using BlueJ

HO 0 LE LMK W

Computer Scientist

2 % NAVIGATE®

NEVER
A Beginner's Guide
Ninth Edition

Create, Compile, and Run Java Programs Today

UPDATED AND EXPANDED

Herbert Schildt é 5'" il

Iluminated

Julie Anderson
Hervé Franceschi

TESTING IS INTRODUCED LATE! JUST LOOK AT THE BOOKS

d< /P DEITEL DEVELOPER SERIES
David J. Barnes & Michael Kélling @

’'d Ay O \ % W e
7 ,J ad "\/ O SeECEEEVE A R A Beginner's Guide

: H : 4 PRRM for Programmers " Jsh T T Ninth Edition

o 4.
{ [Z e oy A Pragtical Introdtgtion Ay g B Create, Compile, and Run Java Programs Today
W @ y g ke using BlueJ
f A 8]
\ (Proj aw) p i &3 UPDATED AND E ED

\ ith an introduction to J’ . 4

*

4 7 . i

}

Three books give examples of test cases
Three books contain a definition of testing
Seven books introduce assert, of which two in appendix

IgniaveMan &e Woestyne
& JanVapthi

"~ SOFTWAREONTWERP
. EN PROGRAMMEREN
MET PYTHON 3

Open Universiteit

-

Test Informed Learning with Examples-

What is TILE and how does it help?

WHAT IS TILE?

A new approach to introduce software testing:

Ea rIy - from the first programming exercise
Seamless - as an inherent part of programming education
Subtle - clever and indirect

Test Informed Learning with Examples

THREE TYPES OF TILES

est run TILEs
‘est cases TILEsS
est message TILEs

Test Informed Learning with Examples

1: Test run TILEs

TEST RUN TILES

We can ask the students to test the program instead of
asking them to run the program

Test Informed Learning with Examples

We can ask the students
to test the program

instead of asking them to
TEST RUN TILES run the program

Consider the following program:

n = int(input("Enter a number: "))
square = n * n
print("The square 1is: ", square)

Compare the wording of the following two ways:

1. Now let us run this program, the user can give input through the keyboard and the
results will be shown on the screen

2. Now let us test this program by running it and entering test input data through
the keyboard and checking the resulting output on the screen

Test Informed Learning with Examples

2: Test cases TILEs

TEST CASES TILES

Students often only test happy path execution
We can add add more concrete examples of possible test cases to

create awareness of other useful test cases

Test Informed Learning with Examples

Students often only test happy
path execution
We can add add more concrete

examples of possible test cases to
TEST CASES TILES create awareness of other useful

test cases

Test case TILEs come in different shape and form:

. We can add example test executions,
. or add example test cases,

. make students think about combinations and boundary values,
. and we can point students to a parallel oracle.

A WN B

Test Informed Learning with Examples

TEST CASES TILES: PRESENTING TEST CASES

Students often only test happy
path execution
We can add add more concrete

examples of possible test cases to
create awareness of other useful

test cases

© Exercise:

<, <=, 2, 25,

Implement a program that asks the user for a comparison operator:
, '=and2values. Your program has to display on screen the

result (True or Fa'lse) of the given operation applied to the two values.

test | testinputs expected
id operator | valuel value2 output

1 < 12 4 False

2 > 100 40 True

3 == "Hello!" | 40 False
4 = 100 "Python" | True

5 >= 98.67 0.45 True

6 <= -100 40 True

7 < 24 "24K" True

8 >= "email" "correo" | True

Test Informed Learning with Examples

3: Test message TILEs

TEST MESSAGE TILES

TILEs of this type hide a subliminal message about the
importance of testing,.

Test Informed Learning with Examples

TILEs of this type hide a

subliminal message about the
importance of testing.

TEST MESSAGE TILES

/0 Exercise:\ >>> BRun :
) Something important: Testing your code
Write a program
that asks the \l | I | |/
user for some- (00)
thing important |-~ 000----- (L)-————————————- |
and returns a | |
billboard ASCII | Testing your code is important! |
art. | |
N / |- 0oo--—-—---— |

Test Informed Learning with Examples

L\ \

A3 7
L\«\VT
-~ "\
\\

Applying TILE in an existing course

Our experiences

APPLYING TILE IN AN EXISTING COURSE

— First year Bachelor Python course

- All exercises have been TILEd

- Test run TILEs require little effort

- Test cases TILEs increases the size of the workbook
- Students started to think more like testers

- Exercises were better understood

- Students became enthousiatic about testing

- Itis challenging to get colleagues involved

Test Informed Learning with Examples

Open Repository

OPEN REPOSITORY

We created an open
repository containing

TILEd exercises

usable in excisting
courses

Everybody can
contribute!

8 Password hashing | Test Inform: X

QO B https:/ftile-repository.github.io/assignments/passwordhashing/

Each exercise contains

Test Informed
Learning with
Examples

Repository with assignments using the
Test Informed Learning with Examples
(TILE) method to integrate testing into
existing programming courses for free.

Menu

o TILE

o All assignments

o First year course

¢ How to contribute

« About this repository

meta-information about
Password Hashing the programming
S concepts taught,

« Hashing
¢ Learning goals

e required pre-knowledge,
type of TILE et cetera

 Solution example

« Generator for the password files
¢ Possible adaptations

e Metadata

» References

Hashing

Hashing is a mathematical algorithm that maps data of arbitrary size (often called the “message”) to
a bit array of a fixed size (the “hash value”, “hash”, or “message digest”). It is a one-way function,
that is, a function which is practically infeasible to invert. It is often used to store passwords, for
example of users of a website.

Hashes are often subject to attacks to gain access to computer systems. Attackers often use sets of

calculated hashes known as rainbow tables. These tables contain hashes of common used passwords
such as dictionary words or often used password such as “Welcome123”, “qwertyuiop” and “123456"
(the most often used password in 2020). Using pre-calculated hashes is much more effective then
brute-force attacks. To improve security of hashes, salting can be used. A a large random value is
added to the password before calculating the hash. This value is called the salt. This makes h.
much more difficult to crack using rainbow table attacks since an attacker wi Ve to generate

rainbow tables for every given salt. The salt can be stored in plain text along with the hashed value ".

One of the algorithms used to create hashes is Message Digest Algorithm 5 (MD5). For this
algorithm, cases are known where multiple inputs where found for a single output. These are called
hash-collisions. Because of this, MD5 is considered to be an unsafe choice for hashing sensitive data
like passwords. There are many more hashing algorithms which are safer, but many of them have
(other) security problems as well.

Learning goals
General computer science learning goals:

« Hashing techniques.
o Brute-force attack:

edu.nl/f9ptp

Test Informed Learning with Examples

Students don’t test
their code very well

D"

// give difficulty stars between 1 and 5
public void setDifficulty(double difficulty)

il
if(1 <= this.difficulty && this.difficulty % 0.5 == 0)
{

this.difficulty = difficulty;

c > o O B nipsiresearchrissdoona * Chea

8 Each exercise contains Niels Doorn, Ph.D. Niels Doorn, Ph.D. student in Computer Science
2 2 Education (CSEd)
meta-information about student
the programming
OPEN REPOSITORY concepts taught,
required pre-knowledge,
We have created an type of TILE et cetera 1500000002 068048,
X e
open repository L EE—r——————— Twiter
containing TILEd ity ; 1CST 2025
5 i : g DusLiy
exercises usable in
excisting courses - el

us of my rese: i D O ORN

[
Pen Universiteit / yyy, Stend,
fen

edunl/f9ptp

Read more about this research

A new approach to introduce software testing:

Early
Seamless
Subtle

Yelse Everybody can
WHAT IS TILE?

- Education on Software testing needs to improve "
- Educators lack time to overhaul existing courses
- TILE introduces testing from the first exercise

edu.nl/utgcw

Please join our community and contribute to our repository

We can ask the students
to test the program

instead of asking them to
TEST RUN TILES run the program

Consider the following program:

n = int(input("Enter a number: "))
square = n * n
print("The square is: ", square)

Compare the wording of the following two ways:

1. Now let us run this program, the user can give input through the keyboard and the
results will be shown on the screen

2. Now let us test this program by running it and entering test input data through
the keyboard and checking the resulting output on the screen

Students often only test happy
path execution
We can add add more concrete

TILEs of this type hide a

subliminal message about the
importance of testing.

examples of possible test cases to

TEST MESSAGE TILES TEST CASES TILES: PRESENTING TEST CASES create awareness of other useful
test cases
. >>> %Run (> ise: le a prog. that asks the user for a comparison operator:
[>] Exercise: Something important: Testing your code <, <=, >, >=, ==, l=and2values. Your program has to display on screen the

Write a program

result (True or False) of the given operation applied to the two values.

that asks the NIy
user for some- st | Testinpots ted
i iBortantll @0 [———————m—0O0————=()m————mmmmmmm—m e es est inpu expecte
:"]'gg rIeTuﬁ'?]rstanat I 000) I id | operator | valuel [value2 output
0 Testing your code 1is dimportant! : o [12 [False
billboard ~ ASCII I gy P I 3 |» 100 40 True
art | 000 | 3 |== "Hello!" | 40 False
T 4 I= 100 "Python" | True
lT Tl 5 >= 98.67 0.45 True
6 <= -100 40 True
oo oo 7 < 24 "24K" True
8 >= "email" "correo" | True

niels.doorn@ou.nl

NHJ
STENDEN
] university of

applied sciences

Open Universiteit 8

